
protege-tutorial Documentation
Release 0.5

protege-tutorial

Sep 18, 2017

Contents:

1 Initial Preparation 3
1.1 GitHub Login . 3
1.2 Clone this repository . 3
1.3 Install Protege 5 for Ontology Development . 3

2 Starting Protégé 5
2.1 The Protégé UI . 7

3 The entities tab 11
3.1 Creating your first class . 13
3.2 Renaming an entity . 15
3.3 New entities . 17
3.4 Adding annotations properties . 18
3.5 Setting label rendering . 20
3.6 Creating the class hierarchy . 22
3.7 EXERCISE: Basic Subclass Hierarchy . 23

4 Class description view 25

5 Protégé plugins 31
5.1 Annotation search plugin . 32

6 Disjointness 33
6.1 Reasoning and inconsistency checking . 35
6.2 EXERCISE: Basic Disjoint . 39

7 Making Ontologies from Spreadsheets and templates (Optional) 41

8 Object properties 45
8.1 Create an object property . 45

9 OWL class restrictions 49
9.1 Superclass restrictions . 49
9.2 Existential tree plugin . 52
9.3 EXERCISE: Basic Restrictions . 53

10 DL query tab 55
10.1 EXERCISE: Basic DL Queries . 59

i

11 Equivalent classes 61

12 Automatic classification 65
12.1 EXERCISE: Basic classification . 65
12.2 EXERCISE: Classification using Unions (Optional) . 65
12.3 Introduction to property axioms . 65
12.4 Excercise: . 65

13 Imports 67
13.1 EXERCISE: response to stimulus . 68
13.2 Ontology libraries . 69

14 71
14.1 Catalog files . 73

ii

protege-tutorial Documentation, Release 0.5

Protégé 5 tutorial for GO Editors. V2

Contents: 1

protege-tutorial Documentation, Release 0.5

2 Contents:

CHAPTER 1

Initial Preparation

GitHub Login

Obtain a login at GitHub (https://github.com/) and send your login name so you can be added to the GO Organization
(https://github.com/geneontology). This is our repository for ontology files and issue trackers.

Clone this repository

Visit https://github.com/geneontology/protege-tutorial

click “Clone or Download”

This will give you a URL you can use

git clone https://github.com/geneontology/protege-tutorial.git

These files will be under protege-tutorial on your drive.

Install Protege 5 for Ontology Development

Download and install the latest version of Protege (5.1) for ontology development.

http://protege.stanford.edu/products.php#desktop-protege

The exercises assume that you have the tutorial directory checked out from GitHub. If for some reason you’re unable
to do this, you can download individual files from:

https://github.com/geneontology/protege-tutorial

3

https://github.com/
https://github.com/geneontology
https://github.com/geneontology/protege-tutorial
https://github.com/geneontology/protege-tutorial

protege-tutorial Documentation, Release 0.5

4 Chapter 1. Initial Preparation

CHAPTER 2

Starting Protégé

When you start Protégé a welcome dialog appears where you can choose to

1. Create a new OWL ontology

2. Open an existing OWL ontology

3. Open an ontology from a particular URI (e.g http://purl.obolibrary.org/obo/go.owl).

We will begin by selecting “Create new Ontology”. In the next dialog we will create an IRI that can be used to

5

http://purl.obolibrary.org/obo/go.owl

protege-tutorial Documentation, Release 0.5

identify our ontology on the Web. You can set the IRI to anything you want at this stage, for this tutorial we will use
http://purl.obolibrary.org/obo/owl-tutorial/chromosome-parts.owl.

You will also want to save this ontology file to your hard disk. Use the next dialog to save the ontology file some-
where convenient. Finally you will want to choose a format for your ontology file. Protégé allows you to save your
ontology in a variety of OWL formats, including the OBO file format. We recommend that you save your ontology in
RDF/XML, as this is the most stable format to work with in Protégé. You can always choose to export your file in one
of the other formats later.

6 Chapter 2. Starting Protégé

http://purl.obolibrary.org/obo/owl-tutorial/chromosome-parts.owl

protege-tutorial Documentation, Release 0.5

The Protégé UI

After a few seconds Protégé will launch into the main user interface. The protégé interface follows a basic paradigm
of Tabs and Panels. The layout of tabs and panels is configurable by the user. By default protégé launches with 5 main
tabs.

2.1. The Protégé UI 7

protege-tutorial Documentation, Release 0.5

The first tab you see is the Active Ontology tab. Here you will find some basic meta-data about the ontology you are
viewing. At the very top you see the IRI and file name of the active ontology you are viewing. Protégé allows you to
work with multiple ontologies at once (See later), so this top bar is very important as it lets you know which ontology
you are viewing and editing.

8 Chapter 2. Starting Protégé

protege-tutorial Documentation, Release 0.5

The panel on the left is the ontology annotations panel. You can use this panel to add basic meta-data to your ontology,
such as the creation date, the authors and a short description.

2.1. The Protégé UI 9

protege-tutorial Documentation, Release 0.5

10 Chapter 2. Starting Protégé

CHAPTER 3

The entities tab

You will see along the top of the screen various tabs. Each tab provides a different perspective on the ontology. For
example, the classes tab allows us to view and edit the classes in the ontology, and similarly the properties tab focuses
on the properties in the ontology. The primary tab where you will spend most of your time is the entities tab.

Select the entities tab and then select the Thing class. Thing is the root class for all OWL ontologies and it cannot be
deleted in Protégé.

The entities tab is split into two halves. The left hand side provides a suite of panels for selecting various entities in
your ontology. When a particular entity is selected the panels on the right hand side displays information about that
entity. The entities panel is context specific, so if you have a class selected (like Thing) then the panels on the right are
aimed at editing classes.

11

protege-tutorial Documentation, Release 0.5

If you select the topObjectProperty property in the panel at the bottom, the right hand side panels will change context.

12 Chapter 3. The entities tab

protege-tutorial Documentation, Release 0.5

Creating your first class

By far the most common panel for working with your ontology is the Class hierarchy panel.

There are three buttons at the top of the class hierarchy view. These allow you to add a subclass, add a sibling or delete
a selected class. We will use the ‘add subclass’ button to add a child class to OWL thing. For now, simply name this
class cellular_component.

3.1. Creating your first class 13

protege-tutorial Documentation, Release 0.5

The class should have been created as follows. By default Protégé will use the ontology IRI, followed by a #, followed
by your specified name (replacing spaces with underscores) as the the unique IRI for this entity. If you hover over this
class with your mouse you will see the full IRI for this class

14 Chapter 3. The entities tab

protege-tutorial Documentation, Release 0.5

Renaming an entity

We can change the IRI for a concept using the rename function in the refactoring menu. Rename the cellu-
lar_component class to use its proper IRI from the Gene Ontology (http://purl.obolibrary.org/obo/GO_0005575)

Make sure the check the “Show full IRI” box so you can edit the full IRI.

3.2. Renaming an entity 15

http://purl.obolibrary.org/obo/GO_0005575

protege-tutorial Documentation, Release 0.5

And then paste or type in the correct GO URI.

16 Chapter 3. The entities tab

protege-tutorial Documentation, Release 0.5

Now the correct GO URI appears in the ontology. Obviously you don’t want to have to rename every entity you
create when building your own ontology. Luckily Protégé provides a “New Entities” preferences panel where you can
specify how new IRI should be created.

New entities

Terms in the ontologies we use have separate names and IDs. The names are annotation values (labels) and the IDs
are represented using IRIs. The OBO foundry has a policy on IRI (or ID) generation. You can set an id strategy using
the “New Entities” tab under the Protégé preferences.

Set your new entity preferences as follows:

3.3. New entities 17

http://www.obofoundry.org/id-policy.shtml

protege-tutorial Documentation, Release 0.5

For ontologies other than GO, change the value of the prefix. Note that all OBO library ontologies should use the
obolibrary.org Specified URI value.

Adding annotations properties

You can add annotations (such as labels, descriptions, xrefs, etc.) to any OWL entity using Protégé. The panel on the
right, named Annotations is where these annotations are added. Use this panel to add a “cellular_component” label to
the class you created previously.

18 Chapter 3. The entities tab

protege-tutorial Documentation, Release 0.5

Select the + button to add an annotation to the selected entity. Protégé has a set of built in annotation properties, such
as label and comment – add a comment such as “created during Berkeley tutorial”. You can also create your own
annotation properties.

Note that for practical purposes you will start from an existing OWL file that will include a pre-declared set of an-
notation properties such as ‘has exact synonym’ and ‘definition’. You may never need to create your own annotation
properties.

3.4. Adding annotations properties 19

protege-tutorial Documentation, Release 0.5

Setting label rendering

You can change how Protégé renders entities. It is common to want to view entities by the their label, rather than
identifiers. You can tell Protégé to render on any annotation property you choose. Lets render all entities by their class
label.

20 Chapter 3. The entities tab

protege-tutorial Documentation, Release 0.5

In the view menu choose render by label

The cellular_component class will now render in the hierarchy view using the value of the label annotation property.

3.5. Setting label rendering 21

protege-tutorial Documentation, Release 0.5

Creating the class hierarchy

We will now create a simple class hierarchy. In Protégé ‘class hierarchy’ typically refers to a sub/superclass hierarchy
(also known as an is_a hierarchy in OBO-Edit). We will return to relations such as ‘part of’ later on in this tutorial.
For now, we will take advantage of the fact that the GO cell component ontology allows us to bypass this for now by
means of classes such as ‘cell part’ and ‘nuclear part’.

Using the class hierarchy view create a small section of the cellular component branch of the GO as shown in the
following screenshot. Play around with add subclass, add sibling and the drag and drop functionality.

22 Chapter 3. The entities tab

protege-tutorial Documentation, Release 0.5

Don’t bother to add textual definitions, synonyms, etc. at this stage.

After you have become familiar, you can save your efforts or discard them – you won’t need this ontology from here
on.

EXERCISE: Basic Subclass Hierarchy

Go to the directory basic-subclass in the tutorial folder and open chromosome-parts.owl

3.7. EXERCISE: Basic Subclass Hierarchy 23

https://github.com/geneontology/protege-tutorial/tree/master/basic-subclass

protege-tutorial Documentation, Release 0.5

Follow the instructions in the README file

24 Chapter 3. The entities tab

CHAPTER 4

Class description view

We have seen how to add subclasses in the class hierarchy. Another way to do the same thing is via the Class
description view.

When an OWL class is selected in the entities view, the right hand side of the tab shows the class description panel.
If we select the cell class we see in the class description view that this class has a superclass (cellular_component).
Using the + button we could add more superclasses to the cell class.

25

protege-tutorial Documentation, Release 0.5

Select the ‘intracellular organelle part’ class in your ontology. Using the superclasses + button, add the ‘organelle’
class as a super class.

26 Chapter 4. Class description view

protege-tutorial Documentation, Release 0.5

There are various ways to assert a superclass. The simplest it to just type in the class expression editor. Hint: Pressing
CTRL + SPACE allows you to autocomplete on a term.

27

protege-tutorial Documentation, Release 0.5

You can also use the class hierarchy tab here to search, browse and select the appropriate class.

28 Chapter 4. Class description view

protege-tutorial Documentation, Release 0.5

The ‘intracellular organelle part’ class will now have two parents asserted in the class hierarchy. You will also be able
to see both parents in the class description view.

29

protege-tutorial Documentation, Release 0.5

30 Chapter 4. Class description view

CHAPTER 5

Protégé plugins

Protégé is built on a plugin architecture. There is an activity community of developers writing plugin extensions to
Protégé. There is a plugin library in Protégé that allows you to pick and install plugins. You may also find plugins
elsewhere on the web that must be installed manually.

You can find the plugin library in the Protégé preferences. Select the check for downloads button to see the list of
available plugins.

31

protege-tutorial Documentation, Release 0.5

Install the Annotation Search View and the Existential tree view

Annotation search plugin

Most plugins are either tabs, panels or menu items. The annotations search plugin provides a new panel that can be
used to search through OWL annotations (such as labels and definitions). Tabs and panels can be found in the Window
menu. Under Window -> Views -> Misc views -> annotation search. Once selected you can choose to drop this panel
over any existing panel in Protégé. We recommend that you drop this panel to the right of the class hierarchy view, on
top of the existing annotation view panel.

You can use the annotation search panel to search through all annotation, or restrict it to individual annotations, such
as the label. The annotation view also supports regular expression queries.

32 Chapter 5. Protégé plugins

CHAPTER 6

Disjointness

[the instructors will describe the concept of disjoint classes here]

At the top of our class hierarchy we have cell, cell part, organelle and organelle part. By default OWL assumes that
these classes can overlap, i.e. there are individuals who can be instances of more than one of these classes. We want
to create a restriction on our ontology that states these classes are different and that no individual can be a member of
more than one of these classes. We can say this in OWL by creating a disjoint classes axiom.

We want to assert that organelle and ‘organelle part’ are disjoint. To do this first select the cell class. In the class
description view select the + button next to disjoints. You can use CTRL to select multiple classes.

33

protege-tutorial Documentation, Release 0.5

34 Chapter 6. Disjointness

protege-tutorial Documentation, Release 0.5

Note that the directionality is irrelevant.

Reasoning and inconsistency checking

We have introduced a deliberate mistake into the ontology. We previously asserted that ‘intracellular organelle part’ is
a subclass of both ‘organelle part’ and ‘organelle’. We have now added an axiom stating that ‘organelle’ and ‘organelle
part’ are all disjoint. We can use the reasoner to check the consistency of our ontology. The reasoner should detect our
contradiction.

Protégé comes with several reasoners, and more can be installed via the plugins mechanism (see plugins chapter).
Select a reasoner from the Reasoner menu (HermiT, Pellet or Fact++ will work). Once a reasoner is highlighted, select
“Start reasoner” from the menu.

6.1. Reasoning and inconsistency checking 35

protege-tutorial Documentation, Release 0.5

A progress bar will indicate when classification is complete. The ‘intracellular organelle part’ class will have changed
to red indicating that the class is now unsatisfiable.

36 Chapter 6. Disjointness

protege-tutorial Documentation, Release 0.5

You can also see unsatisfiable classes using the “Class hierarchy (inferred)” panel next to the “Class hierarchy” panel.
(Note - in Protege 5.1, the toggle the “Asserted button” to switch to the inferred view.) Here you will a special class
called Nothing. When we previously said that all OWL classes are sublasses of OWL Thing. OWL Nothing is a
leaf class or bottom class of your ontology. Any classes that are deemed unsatisfiable by the reasoner are shown
as sublasses or equivalent to OWL Nothing. The “class hierarchy (inferred)” view will show you all subclasses of
Nothing.

6.1. Reasoning and inconsistency checking 37

protege-tutorial Documentation, Release 0.5

Once the ontology is classified inferred statements or axioms are shown in the various panels with a light yellow
shading. The class description for ‘intracellular organelle part’ should look something like the following screen shot.
You will see that the class has been asserted equivalent to the Nothing class. Inside this statement a small question
mark icon appears, clicking this will get an explanation from the reasoner for this inconsistency.

Select the ? icon to get an explanation for this inconsistency. The explanation shows the axioms involved. We see
the disjoint class axiom alongside the two subclass axioms are causing the inconsistency. We can simply repair this
ontology by removing the ‘intracellular organelle part’ subClassOf ‘organelle’ axiom.

38 Chapter 6. Disjointness

protege-tutorial Documentation, Release 0.5

Remove the axiom, and resynchronise the reasoner from the reasoner menu.

EXERCISE: Basic Disjoint

Go to the basic-disjoint folder in the tutorial directory and follow the instructions in the README

6.2. EXERCISE: Basic Disjoint 39

https://github.com/geneontology/protege-tutorial/tree/master/basic-disjoint

protege-tutorial Documentation, Release 0.5

40 Chapter 6. Disjointness

CHAPTER 7

Making Ontologies from Spreadsheets and templates (Optional)

Go to the template-examples folder

Open “test1.csv” in Excel. This has a sample set of plant traits

If you have python installed, you can convert this to OWL:

./apply-pattern.py -p simple_measurable.yaml –i test1.csv > test1.owl

Otherwise, just use the existing “test1.owl” file in the directory.

Open this in Protégé and look under plant trait. You should see a flat list of terms. You can navigate to one and look
at the description tab. As you can see, the values from the spreadsheet have been slotted in as specific object property

41

https://github.com/geneontology/protege-tutorial/tree/master/template-examples

protege-tutorial Documentation, Release 0.5

restrictions:

Next, turn on the reasoner. You will see superclasses show up in yellow. These are inferred superclasses.

Navigate to “Class hierarchy (inferred)”

42 Chapter 7. Making Ontologies from Spreadsheets and templates (Optional)

protege-tutorial Documentation, Release 0.5

You will see the entire polyhierarchy is inferred automatically

43

protege-tutorial Documentation, Release 0.5

44 Chapter 7. Making Ontologies from Spreadsheets and templates (Optional)

CHAPTER 8

Object properties

At this point load: chromosome-parts-interim.owl form the tutorial directory ‘basic-restriction’

We will now create an object property and use this to add some restriction onto classes. In OWL properties are used
to assert relationships between individuals (or instance). Properties in OWL can have characteristics such as being
transitive or symmetric. We can assert additional information about properties such their domain and range, along
with defining inverse properties.

Create an object property

We will use the object property view circled below to create a part_of property. In OWL all properties are a sub
property of topObjectProperty.

45

protege-tutorial Documentation, Release 0.5

Select the “add sub property button” circled below and name the property part_of.

We can use the property description view shown below to make assertions about this property. We want to state that the
part_of property has the characteristic of being transitive. If a property is transitive, and the property relates individual
a to individual b, and also individual b to individual c, then we can infer that individual a is related to individual c
via property P. A good example of a transitive property is the geneological ‘ancestor of’ relationship. We can make a
property transitive in Protege by simply selecting the transitive check box.

46 Chapter 8. Object properties

protege-tutorial Documentation, Release 0.5

8.1. Create an object property 47

protege-tutorial Documentation, Release 0.5

48 Chapter 8. Object properties

CHAPTER 9

OWL class restrictions

As previously stated, in OWL we use object property to describe binary relationships between two individuals (or
instances). We can also use the properties to describe new classes (or sets of individuals) using restrictions. A
restriction describes a class of individuals based on the relationships that members of the class participate in. In other
words a restriction is a kind of class, in the same way that a named class is a kind of class.

For example, we can use a named class to capture all the individuals that are chromosome parts. But we could also
describe the class of chromosome parts as all the instances that are ‘part of’ a chromosome.

In OWL there are three main types of restrictions that can be placed on classes. These are quantifier restriction,
cardinality restrictions and hasValue restriction. In this tutorial will initially focus on quantifier restrictions.

Quantifier restriction are further categorised into two types, the existential and the universal restriction.

• Existential restrictions describe classes of individuals that participate in at least one relationship along a spec-
ified property to individuals that are members of a specified class. For example, “the class of individuals that
have at least one (some) ‘part of’ relationship to members of the ‘Chromosome class”. In Protégé 4 the keyword
‘some’ is used to denote existential restrictions.

• Universal restrictions describe classes of individuals that for a given property only have relationships along this
property to individuals that are members of a specified class. For example, we can say a cellular component is
capable of many functions using the existential quantifier, however, OWL semantics assume that there could be
more. We can use the universal quantifier to add closure to the existential. That is we can assert that a cellular
component is capable of these function, and is only capable of those function and no other. Another example is
that the process of hair growth is found only in instances of the class Mammalia. In Protégé the keyword “only”
is used.

In this tutorial we will deal exclusively with the existential (some) quantifier. Note that in OBO-Format, all relation-
ships are implicitly existentially qualified.

Superclass restrictions

In OBO-Edit you will be familiar with creating relationships between classes. Strictly speaking in OWL you don’t
make relationships between classes, however, using OWL restrictions we essentially achieve the same thing.

49

protege-tutorial Documentation, Release 0.5

We want to capture the knowledge that the named class ‘organelle part’ is part of an organelle. In OWL speak, we
want to say that every instance of an ‘organelle part’ is also an instance of the class of things that have at least one
‘part of’ relationship to an ‘organelle’. In OWL we do this by creating an existential restriction on the ‘organelle part’
class.

Select ‘organelle part’ in the class hierarchy and look at it’s current class description. At the top of this view there
are two slots for defining equivalent classes and superclasses. ‘organelle part’ already has one superclass named
cellular_component.

We will create a restriction on ‘organelle part’ stating ‘organelle part’ has a ‘part of’ relationship to some ‘organelle’.
Select the + icon next to the superclasses slot. We will define this anonymous superclass in Manchester OWL syntax
as

‘part of’ some ‘organelle’.

50 Chapter 9. OWL class restrictions

protege-tutorial Documentation, Release 0.5

The class restriction will be shown in the superclasses slot as follows.

Using Protégé create some of your own part_of restriction the ‘cell part’, ‘intracellular part’ and ‘chromosomal part’
classes.

9.1. Superclass restrictions 51

protege-tutorial Documentation, Release 0.5

[the instructors may elucidate more on the nature of these class restrictions here]

NOTE: After each edit to the ontology you might want to synchronize the reasoner to make sure you didn’t introduce
any inconsistencies into your ontology.

Existential tree plugin

The class hierarchy view in protégé shows subclass/superclass[2] relationships between classes. The default class
hierarchy view is restricted to showing strict is-a, or sub/super class relationships. The existential tree is an alternate
class hierarchy view that organise classes into hierarchies based on existential restriction. For example, viewing a
partonomy along the ‘part of’ existential restriction.

The existential tree view can be found under Window -> Views -> Existential Tree

Drop the view over the class description view.

Select the part of property to render your partonomy in the existential tree panel.

52 Chapter 9. OWL class restrictions

protege-tutorial Documentation, Release 0.5

EXERCISE: Basic Restrictions

Stay in the “basic-restriction” folder in the tutorial directory and follow the instructions in the README.txt

The instructors may demonstrate some of the additional options for navigating the ontology at this point:

• Existential Tree Plugin

• OntoGraf

9.3. EXERCISE: Basic Restrictions 53

https://github.com/geneontology/protege-tutorial/tree/master/basic-restriction

protege-tutorial Documentation, Release 0.5

54 Chapter 9. OWL class restrictions

CHAPTER 10

DL query tab

The DL query tab shown below provides an interface for querying and searching an ontology. The ontology must be
classified by a reasoner before it can be queried in the DL query tab.

Go to the “basic-dl-query” folder and open “cc.owl”. Navigate to the DL Query tab.

Type “organelle” into the box, and make sure “subclasses” and “descendent classes” are ticked. “subclasses” is the
direct subclasses calculated by the reasoner (which may often but not always be the same as the asserted subclasses).
“descendants” is all subclasses.

55

https://github.com/geneontology/protege-tutorial/tree/master/basic-dl-query

protege-tutorial Documentation, Release 0.5

In general for GO you should never need the “individuals” box ticked.

You can type any valid OWL class expression into the DL query tab. For example, to find all classes whose members
are part_of a membrane, type “part_of some membrane”.

The OWL keyword “and” can be used to make a class expression that is the intersection of two class expressions. For
example, to find the classes in the red area below, we want to find subclasses of the intersection of the class ‘organelle’
and the class ‘endoplasmic reticulum part’

56 Chapter 10. DL query tab

protege-tutorial Documentation, Release 0.5

Note that we do not need to use the “part” grouping classes in GO. The same results can be obtained by querying for
the intersection of the class “organelle” and the restriction “part_of some ER” – try this and see. We can also ask for
superclasses by ticking the boxes above:

57

protege-tutorial Documentation, Release 0.5

The ‘or’ keyword is to used to create a class expression that is the union of two class expressions. For example:

This is illustrated by the red area in the following Venn diagram:

58 Chapter 10. DL query tab

protege-tutorial Documentation, Release 0.5

EXERCISE: Basic DL Queries

Go to the basic-dl-query folder in the tutorial directory and follow the instructions in the README.txt

10.1. EXERCISE: Basic DL Queries 59

https://github.com/geneontology/protege-tutorial/tree/master/basic-dl-query

protege-tutorial Documentation, Release 0.5

60 Chapter 10. DL query tab

CHAPTER 11

Equivalent classes

The previous example showed the creation of a class restriction. These restrictions were asserted as superclass restric-
tions, and are sometimes known as necessary conditions. That is, if an individual is a member of the ‘cell part’ then it
is necessary for it to also be related to a ‘cell’ along the ‘part of’ property.

61

protege-tutorial Documentation, Release 0.5

Necessary conditions alone mean that individuals can exist that are part of a cell, but are not a type of ‘cell part’. In
OWL we can make an even stronger statement and define the ‘cell part’ class as being equivalent to ‘part of’ some
cell. This is known as a necessary and sufficient condition.

62 Chapter 11. Equivalent classes

protege-tutorial Documentation, Release 0.5

In Protégé we can create an equivalent class restriction inside the “Equivalent class’ slot of the class description view.

63

protege-tutorial Documentation, Release 0.5

64 Chapter 11. Equivalent classes

CHAPTER 12

Automatic classification

EXERCISE: Basic classification

Go to the basic-classification folder and follow the instructions in the README.txt

EXERCISE: Classification using Unions (Optional)

Optional additional exercise if time permits:

Go to taxon-union folder

This introduces classification using “or” and “not”

Futher reading

owl primer - advanced class relationships

Introduction to property axioms

Property heirarchy:

Navigate to ‘occurs in’ (object property tab) in Protege to see this.

Excercise:

• make a git branch of the go-ontology repo

• open go-edit.obo in Protege

65

https://github.com/geneontology/protege-tutorial/tree/master/basic-classification
https://www.w3.org/TR/owl2-primer/#Advanced_Class_Relationships{]}

protege-tutorial Documentation, Release 0.5

• GO has the class ‘regulation of cvt pathway’

• Create a new class, using the same pattern, for ‘negative regulation of cvt pathway’ (Hint - you can use duplicate
to do this, editing the newly created class).

• Run the reasoner. Do you understand the inferred classifications? (Use the explanation plugin to check).

Property chains:

Navigate to ‘occurs in’ (object property tab) in Protege to see this.

EXERCISE: transport & property chains

Go to the transport property chain exercise folder and follow the instructions in the README

66 Chapter 12. Automatic classification

https://github.com/geneontology/protege-tutorial/tree/master/transport_property_chain_excercise

CHAPTER 13

Imports

OWL ontologies may import one or more other OWL ontologies. Ontology imports are managed using the ontology
URI (or IRI). Protégé allows you to import ontologies from both the web and your local files system. The imports
panel is found in the Active Ontology tab by default.

67

protege-tutorial Documentation, Release 0.5

When a file is imported into an ontology, only the IRI of the imported ontology is stored. Protégé uses the IRI to try
and locate the imported ontology the next time you open the file in Protégé. Most OBO ontologies have an IRI that
will refer to document via a URL on the web e.g. the Gene Ontology IRI is http://purl.obolibrary.org/obo/go.owl[4].
Navigating to this URL in a web browser will retrieve the latest gene ontology. If your ontology imports an ontology
that does not resolve to a web URL, or you are not connected to the internet, then Protégé will prompt you to resolve
the ontology IRI to a file on your system.

Some examples of imports can be found in

http://wiki.geneontology.org/index.php/Ontology_extensions

EXERCISE: response to stimulus

Go to the response-to-stimulus directory and follow the README.txt

This example makes use of a small ontology called STIMO – the stimulus ontology.

68 Chapter 13. Imports

http://purl.obolibrary.org/obo/go.owl
http://wiki.geneontology.org/index.php/Ontology_extensions
https://github.com/geneontology/protege-tutorial/tree/master/response-to-stimulus

protege-tutorial Documentation, Release 0.5

Ontology libraries

Having to wait for Protégé to download ontologies from the web can be rather time consuming, so luckily Protégé has
a mechanism for you define ontology libraries that enable you to store mapping between ontology IRIs and files on
your filesystem. You can create edit your ontology library in the File > Edit ontology libraries. . . menu item.

13.2. Ontology libraries 69

protege-tutorial Documentation, Release 0.5

70 Chapter 13. Imports

CHAPTER 14

Ontology libraries are stored in a file on your system called catalog-001.xml. When you start working with Protégé
you will begin to notice many of these files cropping up on your file system. Chose a catalog-001.xml file to edit and
add ontology files to your library.

71

protege-tutorial Documentation, Release 0.5

72 Chapter 14.

protege-tutorial Documentation, Release 0.5

Catalog files

TODO

14.1. Catalog files 73

	Initial Preparation
	GitHub Login
	Clone this repository
	Install Protege 5 for Ontology Development

	Starting Protégé
	The Protégé UI

	The entities tab
	Creating your first class
	Renaming an entity
	New entities
	Adding annotations properties
	Setting label rendering
	Creating the class hierarchy
	EXERCISE: Basic Subclass Hierarchy

	Class description view
	Protégé plugins
	Annotation search plugin

	Disjointness
	Reasoning and inconsistency checking
	EXERCISE: Basic Disjoint

	Making Ontologies from Spreadsheets and templates (Optional)
	Object properties
	Create an object property

	OWL class restrictions
	Superclass restrictions
	Existential tree plugin
	EXERCISE: Basic Restrictions

	DL query tab
	EXERCISE: Basic DL Queries

	Equivalent classes
	Automatic classification
	EXERCISE: Basic classification
	EXERCISE: Classification using Unions (Optional)
	Introduction to property axioms
	Excercise:

	Imports
	EXERCISE: response to stimulus
	Ontology libraries

	
	Catalog files

